

Web of Things Simplifies Industry Applications

Sebastian Käbisch, Christian Glomb, Charif Mahmoudi, Daniel Peintner
Siemens AG,Corporate Technology,Munich,Germany

{sebastian.kaebisch, christian.glomb, charif.mahmoudi, daniel.peintner.ext}@siemens.com

Keywords: Industrial Internet of Things (IIoT), Web of Things, Industrial Domain Knowledge

Abstract Application development in industry scenarios is usually highly challenging due to the composition of

different technologies such as protocols, exchange formats, and data models. The W3C Web of Things (WoT)

paradigm offers an excellent opportunity to simplify interaction with heterogeneous systems and increase

interoperability in IoT applications such as those for industry. As a contribution to the 2nd W3C Web of

Things Workshop, this position paper gives a brief insight into the opportunities of WoT, e.g. for use cases

from industry, and discusses some white gaps that can be addressed in the future as a new work item for the

next period of the W3C Web of Things working group charter.

1 INTRODUCTION

The main mission of the W3C Web of Things
(WoT) [17] activities is to counter the fragmentation
of the Internet of Things (IoT) by developing a web-
based abstraction layer capable of interconnecting
existing IoT platforms, devices, and cloud services
and complementing available (domain) standards
such as OPC UA, OCF, and OneM2M. Over the last
three years, the WoT Working Group has developed
key technology building blocks to define an
architectural design and a common format for
describing (physical or virtual) Things and services
with the help of a so called W3C WoT Thing
Description (TD) [16].

It is essential to be aware that WoT is not yet

another IoT ecosystem standard. From the beginning,
the WoT Group has invested in collaborations and
liaisons such as with OPC Foundation [12], IETF
[13], and OneM2M [14] to specify technology
building blocks that can be used to complement the
existing established IoT domain standards and
increase interoperability as well as enable cross-
domain applications.

This position paper provides a brief insight into

the opportunities and potential of these building
blocks in the context, e.g., of industry scenarios. In
addition, it identifies considerations and possible
directions to be considered in the next charter period
of the Web of Things standardization group.

Overall our expectations in this workshop are

• Exchange about and discovery of a

variety of new WoT use cases

• Identification of white gaps of the
current working assumptions in WoT

• Increase of involvement of companies
and existing or new IoT initiatives (e.g.
OneM2M)

2 WOT’S OPPERTUNITIES

This section provides an insight into the great
potential of the Web of Thing approach developed by
the W3C Web of Things group so far.

2.1 Ease of Development

In modern IoT applications, ease of development
constitutes a crucial criterion that drives the choice of
the framework among the large scope of existing
solutions [1]. The ease of development can be
measured based on three main aspects. First is the
efficiency of the programmatic Application
Programming Interface (API) offered by the
framework. Indeed, by offering a high-level
programmatic API, an IoT framework can speed up

the development process by substituting general
purpose language with a domain-specific language
dedicated to the interaction model offered by the
framework. This design choice offers to developers a
development model where they can reason within the
concepts of the framework without having to
explicitly map those concepts to the underlying
programming language. Second is the expressivity of
the web API provided by the framework. The IoT
solution offers dedicated schemes that describe the
devices using their web API. Those descriptions are
used for metadata of the services exposed by the
devices and enable applications to communicate with
those devices. Third, is the interaction model offered
by the framework. An the interaction model is a
design model that binds an application together in a
way that supports the conceptual models behind the
application. It is a crucial component of the design of
an IoT application as it defines the way the devices,
cloud, and users interact together to enable an overall
IoT experience.

The WoT provides an elegant answer to those
three aspects which makes it a first chose for the
majority of IoT applications. Indeed, in term of
efficiency of the programmatic API, WoT offers a
standard definition of a scripting API that grants an
abstracted access for the developers to manipulate the
properties of the devices. The WoT scripting API
hides the complexity related to the specificities of the
underlying protocols. Furthermore, the WoT
scripting API is an enabler for portability of the
business logic as a servient developed under the
scripting API is easily remappable from a protocol to
another to certain extend.

One of the major contributions of the WoT is
capability to semantically describe things. By

introducing the notion of Thing Description (TD),
WoT enables a discoverable (using Thing directory)
and semantically annotated description for the
components of an IoT system. TDs play a significant
role to ease the mapping between concepts instead of
the classical approach that used the labels as principal
source of information to implement a matching
mechanism between concepts and their
concretizations.

The simple but efficient interaction model based
on Event, Action, and Property trio defines how WoT
based applications communicate. This model
constitutes a great fit with the protocol bindings and
ease the development of so called servients (server-
client) as it makes the interaction with an instance
independent from all platform specific constraints.

2.2 Industry Demonstrator

Figure 1 shows an example which can be found in
a similar manner in numerous other industry
scenarios. Heterogeneous components using OPC
UA, Modbus/TCP, and BACnet must be composed,
e.g. for monitoring purposes and/or for cloud
integration.

W3C Thing Descriptions can be used to describe
the capacities of a manufacturing system itself and/or
individual Things used in a system, regardless of the
underlying technologies such as protocols or
serialization formats. Based on the application
abstraction of WoT with properties, actions and
events, data and functionality can be used in a
common way and facilitate cross-domain and cross-
technology application development.

Figure 1 Web of Things for industry use cases

Siemens will present various industry-specific
showcases during the W3C WoT workshop and the
preceded Open Day.

2.3. Discovery, Thing Directory

Beyond the ease of development at node level
introduced in the previous section, WoT pushes the
notion of TD to the service discovery level. Service
discovery is a notion widely and successfully used by
the Service-Oriented Architecture (SOA) in the
enterprise world to enable the process of finding
suitable service for a specific task over the Internet
using a registry. Universal Description, Discovery,
and Integration (UDDI) is an ensample of registry
used for webservices discovery where a provider can
register a service and customers can lookup services
in this registry [2].

WoT introduces a Thing Directory that extends
this principle on two distinct axes. First is the
extension to the IoT world. In other terms, it enables
the discovery of physical things instead of the
classical notion of discovery associated to services.
Second is the semantic aspect of the discovery.
Indeed, previous efforts such as Web Services
Inspection Language (WSIL) were introduced to
enhance the discovery mechanism for webservices.
WoT Thing Directory innovates the way discovery is
done by incorporating the interaction model provided
by the TD into the discovery mechanism. The Thing
Directory offers an API to lookup things based on
metadata, properties, actions, or events to tailor the
matchup to specificities of IoT devices. The current
implementation [3] offers a CRUD API to allow users
to interact with the directory. Moreover, Thing
Directory introduces a notion for semantic lookup
using an in-memory triple-store. This way, the Thing
Directory can leverage the semantic description of the
TDs and incorporate it within the lookup mechanism.

2.4. WoT Technology Landscape

Last year WoT found its way into the Open Source

community when the Thingweb project [4] was

accepted to become part of Eclipse IoT. With the

main contributions ‘node-wot’ implementing the

WoT Scripting API and serving as a toolbox for rapid

WoT prototyping, and ‘Thingweb directory’ offering

a database for TDs searchable via SPARQL queries

and hence being the 1st choice for a central TD

repository, Eclipse Thingweb and its affiliated web

page [5] became the starting point for WoT

development activities.

Another excellent tool provided by TU München

takes care about the correct setup of TDs and gives

valuable hints about errors and possible enhance-

ments of a concrete TD instance [6].

However, since WoT aims to be the glue between IoT

protocols, platforms, and domains, one of our future

activities will be to spread the word about WoT in the

Eclipse IoT community and get in touch with other

projects and developers. One of the most concrete and

interesting activities will be to develop a TD importer

plugin for Eclipse Vorto [7] provided by Bosch. With

that, developers will be enabled to generate source

code for embedded systems based on the connectivity

and semantics information hosted in a TD.

Other projects from Eclipse IoT where WoT can
help to enhance the implementation are still to be
identified. Therefore, we are active in the EU funded
project ‘Brain-IoT’ [8] which is supported by the
Eclipse foundation and makes heavily use of Eclipse
software.

3 WOT’S CHALLENGES

Before concluding the position paper, we would
like to give some suggestions for topics for the future
of Web of Things that may be considered in the next
charter work.

3.1 Scripting API as REC

The WoT Scripting API is a programming inter-
face to ease the implementation of applications in a
WoT runtime. It is comparable to a Web browser API
and is meant to provide a standardized contract (e.g.,
for JavaScript applications).

The current development includes the following
features: discover things, consume things, and expose
things.

 At the moment, the Scripting API is an optional
part of the WoT Building Blocks. Hence it is possible
to implement a WoT Thing without using the
Scripting API. Hereafter, reasons are given why it
should become nevertheless a mandatory part of
WoT.

The afore mentioned interface definitions
simplify application development and enable
portability across vendors and network components.
This means application developers may ground its
work on a well-defined API. Moreover, it allows to
run the same application on different hardware. Like

Web apps nowadays, these apps can be deployed to a
device of vendor A as well as vendor B.

Web developers can focus on the actual problem
they want to solve. The challenging implementation
of bindings to given protocols (e.g., HTTP, CoAP,
and WebSocket) can be implemented once in a stable
and efficient way in the scripting API runtime.

Moreover, only the Scripting API allows a simple
way to realize mash-ups of different things. Imagine
a single-entry point for a service that aggregates
under the hood various protocols and low level APIs
with only some lines of code (e.g., JavaScript).
Running code and examples can be found on the
Eclipse project thingweb [18] which accompanies the
standardization.

Let’s recall the time websites have been labelled
with “optimized for”. Everyone can agree that this
fragmentation should not happen again. Web apps are
so successful because one can run them on different
hardware and different operating systems.
Only with well-defined and standardized interfaces
WoT applications will become a first-class citizen in
the Web. Hence, we propose that the Scripting API
becomes a mandatory building block and a W3C
recommendation in a future version. However,
stakeholders from various domains might be
necessary to establish the necessary common ground.
In summary one can say that a well-defined Scripting
API is very beneficial for the WoT landscape.

3.2 Shared Capabilities

One of the strengths of the W3C WoT Thing
Description is the ability to integrate context
knowledge known from certain types of applications
or domain use cases. This is possible by using JSON-
LD 1.1, which enables the integration of external
domain knowledge (e.g. eCl@ss, SAREF,
iot.schema.org) and domain-independent knowledge
such as units (e.g. OM) or geographically based
definitions (e.g. GeoLocation) via the @context
mechanism.

Based on this mechanism, some basic Thing
capability schemes can be defined and used to enrich
Thing Descriptions to increase interoperability in IoT
applications, regardless of domain usage. An example
of such schema capabilities would be on/off, level
value (=0..100%) or operational state (e.g. on, off,
error). Such basic functional schemes can be
centrally managed and linked by a centralized
instance similar to schema.org. A perfect place to
provide such capacities would be the new
iot.schema.org activity, which should focus such
intentions on the next step.

3.3. Eventing

The WoT interaction model defines three
interaction affordance classes, namely Property,
Action and Event.

The first two are generally understood in the same
way. The latter, namely Event, is generally
understood differently by different people active in
different areas. In general, we can say that events
describe push interactions initiated by the Thing.
Examples of events are alarms or samples of time
series that are pushed regularly.

According to the TD specification an event may
contain three data fields. One for the event data itself.
The other two may contain data for subscription and
cancellation. The latter two depend on the protocol
binding used and/or the message format (e.g.,
Webhooks).

We believe that the fields for subscription and
cancellation need further attention and might be
revisited in a future version. Further clarification is
required to create a common understanding.

3.4. Protocols

So far, the W3C Thing Description offers HTTP
protocol binding as standard and thus covers already
a large number of use cases for IoT applications.
However, the TD is designed to be open to the use of
alternative established IoT protocols such as CoAP
and MQTT as well as domain-specific protocols such
as OPC UA, Modbus and BACnet. It would be
desirable to have established and standardized RDF
representations (similar to HTTP [15]) of the desired
protocols in order to share the potential of the
protocols and make them interoperable. A good
platform to manage such protocol-specific
vocabulary would be the W3C or iot.schema.org.

3.5 Alignment with other Standards

The present TD model provides a representation for
(typed) web links exposed by a thing [9]. The web
linking definition of the TD reflects a very common
subset of the terms defined in web linking [10]. The
defined terms can be used, e.g., to describe the
relation to another thing such as a lamp thing is
controlled by a switch thing. A similar goal is
currently pursued in IETF’s Thing-to-Thing research
group (T2TRG) [13]. Therefore, an alignment of
phrases and concepts in both W3C WoT and IETF
T2TRG makes sense and is currently started by
aligning corresponding parts of the TD with an IETF
draft [11].

REFERENCES

[1] H. Hejazi, H. Rajab, T. Cinkler and L. Lengyel,

“Survey of platforms for massive IoT,” in 2018 IEEE

International Conference on Future IoT Technologies

(Future IoT), 2018 .

[2] Y. Zhong, Y. Fan, W. Tan and J. Zhang, “Web service

recommendation with reconstructed profile from

mashup descriptions,” IEEE Transactions on

Automation Science and Engineering, vol. 15, no. 2,

pp. 468-478, 2018.

[3] Thingweb Team, “W3C WoT Thing Directory

implementation,” 4 10 2018. [Online]. Available:

https://github.com/thingweb/thingweb-directory.

[Accessed 1 4 2019].

[4] “Eclipse Thingweb,” 2019. [Online]. Available:

https://projects.eclipse.org/projects/iot.thingweb.

[5] “Thingweb,” 2019. [Online]. Available:

http://www.thingweb.io/.

[6] “Validation of Thing Descriptions,” 2019. [Online].

Available: http://plugfest.thingweb.io/playground/.

[7] “Eclipse Vorto,” 2019. [Online]. Available:

https://www.eclipse.org/vorto/.

[8] “Brain-IoT,” 2019. [Online]. Available:

http://www.brain-iot.eu/.

[9] “TD Web Linking Vocabulary Definition,” 2019.

[Online]. Available: https://w3c.github.io/wot-thing-

description/#link.

[10] Web Linking, 2017. [Online]. Available:

https://tools.ietf.org/html/rfc8288.

[11] “The Constrained RESTful Application Language

(CoRAL),” 2019. [Online]. Available:

https://tools.ietf.org/html/draft-hartke-t2trg-coral-08.

[12] W3C and OPCF to integrate OPC-UA into the Web

of Things, 2016, https://opcfoundation.org/news/opc-

foundation-news/w3c-and-opcf-to-integrate-opc-ua-

into-the-web-of-things/

[13] Thing-to-Thing Research Group (T2TRG),

https://datatracker.ietf.org/rg/t2trg/about/

[14] oneM2M and W3C Web of Things Interworking,

ftp://ftp.onem2m.org/Work%20Programme/WI-

0071/WI-0071-WoT_Interworking-V0_0_1.DOC

[15] HTTP Vocabulary in RDF 1.0. Johannes Koch;

Carlos A. Velasco; Philip Ackermann. W3C. 2

February 2017. W3C Note. URL:

https://www.w3.org/TR/HTTP-in-RDF10/

[16] Web of Things (WoT) Thing Description, W3C

Editor's Draft 17 April 2019,

https://w3c.github.io/wot-thing-description/

[17] Web of Things Working Group,

https://www.w3.org/WoT/WG/

[18] Eclipse Thingweb, Tools and reference

implementation of the W3C Web of Things,

https://github.com/eclipse/thingweb.node-wot

https://github.com/eclipse/thingweb.node-wot

